The FGA5050 is a function generator that equips with the arbitrary waveform function. In addition to Sine waveform, Square waveform, Ramp waveform of those custom waveform generation function, the FGA5050 offers to realize high precision waveform with 1 μHz of resolution and 50 MHz of wideband frequency. The FGA5050 can be used in wide application such as "Voltage variation test for Automotive Electronic Components", "ECU false signal source", "Charge-Discharge test for the rechargeable battery", "Ripple super-impose test" and it can be used as the trigger signal for the various type of test system. Further more, three types of interface, LAN / USB / GPIB* are equipped with the FGA5050 as standard feature, it applies for automated test along with manual operation.

- Wide band frequency
 Sine waveform : 1 μHz to 50 MHz, Square waveform : 1 μHz to 25 MHz
- Sine waveform, Square waveform, Ramp waveform, Triangle waveform, Pulse waveform, Noise waveform, DC, Arbitrary waveform output
- Waveform editor application software "WAVEPATT" is included as standard
- Various modulation types
 AM, FM, PM, FSK, PWM, Frequency sweep, Burst, External Modulation Input
- 16 bits / up to 50 MHz pattern out
- 14 bits / 256 k-point, 125 MS/s
- 10 MHz clock in and out
- Trigger Input and Trigger output (TTL compatible)
- Interface : LAN / USB / GPIB* standard

*Only available in Model FGA5050GC

Application

Voltage variation test for Automotive Electronic devices

The system combined with the FGA5050 and the Bipolar power supply, it can be used as the "Signal Source" for the "Voltage variation test of the automotive electronic components" complied to the ISO standard and other manufacturer's standard.

Measurement of the output impedance of the power supply

The system combined with the FGA5050, electronic load, and multi-meter, it can be used as the "Reference AC Signal" for the "Impedance measurement of power supply output".
<table>
<thead>
<tr>
<th>Specifications</th>
<th>Waveform characteristics</th>
<th>Sine waves</th>
<th>Arbitrary waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveforms</td>
<td>Standard waveforms: sine, square, ramp, triangle, pulse, noise, and DC</td>
<td>DC offset</td>
<td>Pulse width</td>
</tr>
<tr>
<td>Frequency</td>
<td>1 μHz to 50 MHz</td>
<td>1 μHz</td>
<td>Greater than 400 ns</td>
</tr>
<tr>
<td>Amplitude</td>
<td>Between -12 dBm (relative to 1 kHz)</td>
<td>DC offset</td>
<td>Typically 6 mVpp</td>
</tr>
<tr>
<td>Linearity</td>
<td>Less than 0.1 % of the peak output</td>
<td>Frequency</td>
<td>Greater than 400 ns</td>
</tr>
<tr>
<td>Input level</td>
<td>TTL compatible</td>
<td>1 μs to 500 s</td>
<td></td>
</tr>
</tbody>
</table>