FC Impedance Meter

KFM2030

Measurement of fuel cell impedance characteristics using AC impedance measurement
Capability to measure cells of up to 20 V in the range of 10 mHz to 10 kHz
Two constant current mode ranges - 30 A and 5 A - supported as the load rating
Load current setting resolutions of 1 mA (30 A range) and 0.1 mA (5 A range) with maximum power consumption of 60 W
Various protection functions
Equipped with GPIB, RS-232C and USB interfaces as standard
Fuel cell characteristic, variation, and service life testing can be done with ease!

FC Impedance Meter

KFM2030

- Equipped with GPIB, RS-232C and USB interfaces as standard
- Application software included

The impedance meter KFM2030 is intended to enable the impedance characteristics of a fuel cell to be measured easily through the use of the AC impedance measurement method. Using the application software that comes with it, the meter can obtain impedance values at different frequencies by means of AC impedance measurement and display the obtained values in a Cole-Cole plot. With a low-power DC load (60 W) built in it, KFM2030 supports fuel cell load testing at up to 20 V, at up to 30 A.

- Impedance of cells of up to 20V can be measured in the range of 10 mHz to 10 kHz. (The cell voltage can be read back as well in the 0 V-20 V range.)
- Two constant current modes ranges for the load rating: 30 A and 5 A
 - Load current setting resolutions of 1 mA (30 A range) and 0.1 mA (5 A range) are available, with maximum power consumption of 60 W.
- Undervoltage protection, overvoltage protection, overpower protection, overheat protection, overcurrent protection, and line cut detection are supported.
- The backlit LCD offers enhanced visibility.
- Four types of measurement value can be chosen for display freely from R, X, $|Z|$, θ, V, and I.
- Equipped with GPIB, RS-232C and USB interfaces as standard.
- Impedance measurements can be made in the range of 10 mHz to 10 kHz as well on both primary and secondary cells.
Why is impedance measurement necessary?

Not only fuel cells but also many other types of cells do not allow performance adjustment in the post-manufacturing stages. It is nonetheless necessary to run and test the cells in order to verify that they provide the expected levels of performance and meet the required specifications. However, running every manufactured cell for testing purposes is by no means easy. One way to examine the characteristics of individual cells in a short time is to conduct accurate impedance measurement. Knowing impedance characteristics provides clues as to the characteristics and performance variation of cells as well as their service life.

Application software

Cole-Cole plot

Cole-Cole plot test screen

Impedance measurement method - AC impedance measurement

There are several impedance measurement methods, including:

1. AC impedance measurement,
2. current interrupt method,
3. fast Fourier transform,
4. litharge method,
5. impedance bridging,
6. oscilloscope measurement.

Of these, AC impedance measurement is the most popular method. To measure large currents, the current interrupt method has been the technique of choice. This method, however, is often problematic in terms of data reproducibility and accuracy.

The AC impedance measurement method applies alternate current-induced vibration to the device under test (fuel cell), calculates the complex impedance from the amplitude of the resulting voltage and current and the phase difference, and then plots the impedance in a complex coordinate system. By varying the vibration frequency of alternate current, the method obtains the equivalent impedance from the plotted trajectory.

- Constants of the approximate equivalent circuit of the fuel cell are determined by the data obtained through multiple-point plotting of frequency (3 to 70 points).

Current-voltage characteristic measurement testing (I-V characteristics)

I-V test screen

I-V characteristic file

- The cell voltage and internal resistance are measured with respect to the load current, and a Tafel plot is displayed.
- The quantity of gas flow is made constant, thus rendering it possible to conduct cell evaluation and to measure the current density based on the reaction area.
- The maximum resolution can be adjusted in 1 mA steps in the range of 0 A to 30 A. The software reads voltages with the specified resolution. The measurement can be repeated any number of times including infinitely.

CC mode testing (for aging)

CC mode test screen

- The rise and fall times can be set to a maximum of 999 seconds each.
- The logging interval can be adjusted in the range of 1 to 99999 seconds.
- The measurement current can be applied continuously on a single frequency, thereby making it possible to measure load current impedances as high as 30 A. (It is also possible to cut off the measurement alternate current.)
KFM2030 specifications

Impedance measurement part
- **Measurement frequency**: 10 mHz to 10 kHz
- **Frequency resolution**: 14 points/decade - 1.00, 1.26, 1.58, 2.00, 2.51, 3.00, 3.16, 4.00, 5.00, 6.00, 6.30, 7.00, 8.00, 9.00
- **Measurement range**\(^1\): 100 mΩ, 1 kΩ, 10 kΩ, 100 kΩ, 1 MΩ
- **Measurement alternate current**: 60 mA rms (165 mA range), 180 mA rms (500 mA range), OFF
- **Measurement resolution**: 1 mΩ, 100 mΩ, 1 kΩ, 10 kΩ
- **Measurement value display**: Four types of measurement value can be chosen for display freely from R, X, I Z, i, voltage, and current.
- **Measurement accuracy**: ±0.2% of range\(^2\)
- **Voltage measurement accuracy**: ±0.05 V
- **Current measurement accuracy**: ±0.2 V
- **Current measurement resolution**: 10 µA

DC voltage/current measurement part
- **Voltage range**: 2 V to 20 V
- **Voltage measurement resolution**: 100 µV
- **Voltage measurement accuracy**: ±0.2% of range\(^3\)
- **Voltage measurement resolution**: ±2% for 30 A
- **Monitor output voltage**: 10 V for sensing input
- **Current measurement accuracy**: ±0.2 µA
- **Current measurement resolution**: ±1 µA

Electronic load
- **Operation mode**: Constant current
- **Range**: Two ranges - 5 A and 30 A
- **Maximum load current**: 30 A
- **Input voltage range**: 0 V to 20 V
- **Maximum input power**: 60 W
- **Current setting accuracy**: ±0.5% of set\(^4\) ±10 mA
- **External control**\(^5\): 5 A range: 0 A to 5 A for 0 V to 10 V
- **30 A range**: 0 A to 30 A for 0 V to 10 V

Display
- 240 dots x 64 dots LCD with cold-cathode ray tube backlighting
- **Impedance measurement part**: 10 mΩ → XX.XXX mΩ, 30 mΩ/100 mΩ → XXX.XX mΩ, 300 mΩ → XXX.XX mΩ
- **DC voltage measurement part**: 0.0000 V to 2.0000 V and 2.000 V to 20.000 V

General specifications
- **External control interface**: GPIB, RS-232C, and USB
- **Average setting**: The integral average (1 to 32) and the moving average (1 to 256) may be used in combination.
- **Protection functions**
 - **Overvoltage protection (OVP)**: The load is cut off if a voltage of 21 volts or higher is applied to the sensing terminal.
 - **Overpower protection (OPP)**: Power of 63 watts or higher activates the CP and lights the OVER LOAD LED lamp.
 - **Overheat protection (OHP)**: The load is cut off if the temperature inside the load unit becomes abnormally high.
 - **Overcurrent protection (OCP)**: If a load current of 31.5 amperes or higher flows, the LCD displays “ALM:OCP” and the load is cut off.
- **Undervoltage protection (UVP)**: The load is cut off if the voltage applied to the sensing terminal falls below the set voltage limit.
- **Guaranteed temperature**: +15°C to +35°C, 20% to 85% rh or below

Accessories
- **Power cord**: 1 Sinking line: 1 Load line: 1 Operation manual: 1 Application software (CD): 1

Options
- **Rack mount bracket**: KRKB100-TOS (JIS)
- **KRKB2-TOS (EIA)**

\(^1\) Values up to four times the range can be measured. Note that, in cases where the drift or ripple of the fuel cell is large or there is much noise, a value lower than the range may be regarded as exceeding the range.

\(^2\) Range: Measurement range

\(^3\) rdg: Reading of input voltage

\(^4\) set: Value set for input current

\(^5\) The set full scale can be fine-tuned.